
www.manaraa.com

Supercomputing ’88
Kissimmee, Florida, November 14-18, 1988

iWarp: An Integrated Solution to High-Speed Parallel Computing

Shekhar Borkar, Robert Cohn, George Cox, Sha Gleason, Thomas Gross,
H. T. Kung, Monica Lam, Brian Moore, Craig Peterson, John Pieper,
Linda Rankin, P. S. Tseng, Jim Sutton, John Urbanski, and Jon Webb

Department of Computer Science Intel Corporation, JF1-60
Carnegie Mellon University 5200 N.E. Elam Young Pkwy

Pittsburgh, Pennsylvania 15213 Hillsboro, Oregon 97124

An iWarp component connected to a local memory formsAbstract
an iWarp cell; up to 64 MBytes of memory are directly
addressable. A large array of iWarp cells will deliver aniWarp is a system architecture for high speed signal, image
enormous computing bandwidth never before realized in dis-and scientific computing. The heart of an iWarp system is the

iWarp component: a single chip processor that requires only tributed memory parallel systems. Because of the strong
the addition of memory chips to form a complete system computation and communication capabilities and because of
building block, called the iWarp cell. Each iWarp component its commercial availability, iWarp is expected to be an impor-
contains both a powerful computation engine (20 MFLOPS) tant building block for a diverse set of high performance
and a high throughput (320 MBytes/sec), low latency parallel systems.
(100-150 ns) communication engine for interfacing with other

The iWarp architecture evolved from the WarpiWarp cells. Because of its strong computation and com-
machine [1], a programmable systolic array developed at Car-munication capabilities, the iWarp component is a versatile

building block for various high performance parallel systems. negie Mellon and produced by General Electric. All applica-
These systems range from special purpose systolic arrays to tions of Warp, including low-level vision, signal processing,
general purpose distributed memory computers. They are and neural network simulation [2, 18], can run efficiently on
able to support both fine-grain parallel and coarse-grain dis- iWarp. But systems made of the iWarp building block can
tributed computation models simultaneously in the same sys- achieve at least one order of magnitude improvement over
tem. An iWarp system can include a large number of cells; Warp in cost, reliability, power consumption, and physical
the initial iWarp demonstration system consists of an 8×8 size. Much larger arrays can be easily built. The clock speed
torus of iWarp cells, delivering more than 1.2 GFLOPS. It of iWarp is twice as high as Warp; the increase in computa-
can be expanded to include up to 1,024 cells. This paper tion throughput is matched by a similar increase in I/O
describes the iWarp architecture and how it supports various bandwidth. Therefore we expect iWarp to achieve the samecommunication models and system configurations.

high efficiency as Warp. For example, the NETtalk neural
network benchmark [20] runs at 16.5 million connections per
second and 70 MFLOPS on a 10 cell Warp array; the same1. Introduction
benchmark runs at 36 million connections per second and 153iWarp is a product of a joint effort between Carnegie Mel-
MFLOPS on an iWarp array of the same number of cells.lon University and Intel Corporation. The goal of the effort is

to develop a powerful building block for various distributed Although the design of the iWarp architecture profited
memory parallel computing systems and to demonstrate its greatly from programming and applications experiences
effectiveness by building actual systems. The building block gained from many Warp machines in the field, iWarp is not
is a custom VLSI single chip processor, called iWarp, which just a straightforward VLSI implementation of Warp. iWarp
consists of approximately 600,000 transistors. is intended to have a much more expanded domain of applica-

tions than Warp. The following summarizes the goals ofThe iWarp component contains both a powerful computa-
iWarp as a system building block:tion processor (20 MFLOPS) and a high throughput (320

• iWarp is useful for the implementation of both specialMBytes/sec), low latency (100-150 ns) communication en-
purpose arrays, which require high computation and I/Ogine. Using nonpipelined floating-point units, the computa-
bandwidth, and general purpose arrays where program-tion processor will sustain high computation speed for vec-
mability and programming support are essential.torizable as well as non-vectorizable codes.

• iWarp is useful for both high performance processors
attached to general purpose hosts and autonomous
processor arrays capable of performing all the computa-The research was supported in part by Defense Advanced Research
tion and I/O by themselves. That is, iWarp can be usedProjects Agency (DOD) monitored by the Space and Naval Warfare
for both ‘‘host centric’’ and ‘‘array centric’’ processing.Systems Command under Contract N00039-87-C-0251.

Authors’ affiliations: S. Borkar, G. Cox, S. Gleason, B. Moore, • iWarp supports both tightly and loosely coupled paral-
C. Peterson, L. Rankin, J. Sutton, J. Urbanski: Intel Corporation; lel processing, and both systolic [12] and message pass-
R. Cohn, T. Gross, H. T. Kung, M. Lam, J. Pieper, P. S. Tseng, ing models of communication.
J. Webb: Carnegie Mellon University

www.manaraa.com

• iWarp can implement a variety of processor intercon- 2. iWarp overview
nection topologies including 1-dimensional (1D) arrays, An iWarp system is composed of a collection of iWarp
rings, 2-dimensional (2D) arrays, and tori. cells, each of which consists of an iWarp component and its

local memory. This section first gives an overview of the• iWarp is intended for systems of various sizes ranging
iWarp component and then summarizes how an iWarp cellfrom several processors to thousands of processors.
physically interfaces with the external world so that variousThis paper will explain how the iWarp architecture addresses
iWarp systems can be constructed.these objectives.

2.1. iWarp componentBesides conventional high level languages such as C and
FORTRAN, the programming of iWarp arrays will be sup- The iWarp component has a communication agent and a
ported by programming tools such as parallel program computation agent, as depicted in Figure 1.
generators. Previous experience and current research on
Warp indicates that parallel program generators are one of the
most promising approaches to programming distributed
memory parallel computers. In this approach, a specialized,
machine independent language is created, which embodies a
particular parallel computation model (for example, input par-
titioning, domain partitioning, or task-queuing [13]). The
compiler for that language then maps the program onto a
target parallel architecture. This approach can allow efficient
parallel programs to be generated automatically for large
processor arrays.

Automatic parallel program generators have been
developed for iWarp in two applications areas: scientific com-
puting and image processing. The scientific computing lan-

Computation
Agent

iWarp Component

& 20 MIPS
20 MFLOPS

per physical port
40 MBytes/sec

Local Memory

160 MBytes/sec

Communication
Agent

guage, called AL (Array Language) [21], incorporates the
Figure 1. iWarp component overviewdomain partitioning model and allows programmers to trans-

fer data between a common space and a partitioned space, The computation agent can carry out computations indepen-
perform computation in parallel in the partitioned space, and dently from the operations being performed at the com-
then transfer data back. For scientific routines such as those munication agent. Therefore a cell may perform its computa-
found in LINPACK [5], the AL compiler generates efficient tion while communication through the cell from and to other
code for iWarp and Warp, as well as for uniprocessors. The cells is taking place, and the cell program does not need to be
image processing language, called Apply [9], incorporates the involved with the communication. While separating the con-
input partitioning model: the input images are partitioned trol of the two agents makes programming easy, having the
among the processors, each of which generates part of the two agents on the same chip allows them to cooperate in a
corresponding output image. Apply compilers exist for tightly coupled manner. The tight coupling allows several
iWarp, Warp, uniprocessors, and the Meiko Computing Sur- communication models to be implemented efficiently, as to be
face, as well as several other computer architectures. discussed in Section 4. The major blocks in iWarp are shown
Benchmark comparisons on Apply programs have validated in Figure 2.
the above claims [22].

As of July 1988, the architecture and logic designs for
iWarp have been completed. In the software area, an optimiz-
ing compiler developed for Warp [8, 17] has been retargeted
to generate code for iWarp. Using this compiler, the iWarp
performance on real programs, including those generated by
the parallel program generators mentioned above, have been
evaluated on an iWarp architecture simulator. A prototype
iWarp system is expected to be operational by the end of
1989. Three demonstration systems, each consisting of an
8×8 torus of iWarp cells, are scheduled to be operational in
the middle of 1990.

The organization of this paper is as follows. In the next Pathway Unit

COMMUNICATION AGENT

COMPUTATION AGENT

Multiported Register File

FloatingFloating
Memory
Local

Unit

Multiplier
Point Point

Adder

Streaming
Spooling/

Integer/

Unit
Logic

section, we give an overview of iWarp and how iWarp sys-
Figure 2. Major functional units in iWarptems can be constructed from them. Some sample iWarp

usages and system configurations are described in Section 3.
In the following we summarize the major features in theSections 4 and 5 deal with one of the most innovative features

two agents and their interface. The performance numbers areof the iWarp architecture  the iWarp intercell communica-
based on the expected clock speed of 20 MHz, i.e., a clock istion models and mechanism. The computation part of the
50 ns. Further discussions on iWarp communication andiWarp component is discussed in Section 6, which also in-
computation features are provided in Sections 5 and 6, respec-cludes some preliminary iWarp performance figures on the
tively.Livermore Loops benchmark. Finally, a summary of the

paper and some concluding remarks are given.

www.manaraa.com

Communication agent 2.2. Forming iWarp systems
Various iWarp systems can be constructed with the iWarpFour input and four output ports

cell. We describe how copies of the iWarp cell can be• 40 MBytes/sec data bandwidth per port
connected together, and how an iWarp cell can connect to• Word by word, hardware flow control at each port
peripherals to form these systems.• An output port can be connected to an input port of

another iWarp cell via a point-to-point physical bus. There are two ways that an iWarp cell, consisting of an
iWarp component and its local memory, physically interfacesMultiple logical busses multiplexed on each physical bus.
with the external world. Recall that the iWarp component has• Maintaining up to 20 incoming pathways simultaneously
four input ports and four output ports. The first interfacein an iWarp component
method is to use a physical bus to connect an output port of an• Idle logical busses do not consume any bandwidth of the
iWarp to an input port of another. The former and latter portphysical bus.
can write to and read from the bus, respectively. Thus this is

Pathway unit a unidirectional bus between the two components, as
represented by the arrowed edge in Figure 3 (a). Usually• Routing for 1D and 2D configurations
another unidirectional bus in opposite direction is also• Capable of implementing wormhole and streetsign routing
provided, so that bidirectional data communication betweenschemes
the two component is possible. This is illustrated in Figure 3Both message passing and systolic communication are sup-
(b).ported for coarse-grain and fine-grain parallel computation.

Computation agent

Computational units
• Floating-point adder

• 10 and 5 MFLOPS for 32- and 64-bit additions (IEEE
754 standard), respectively

• Nonpipelined
• Floating-point multiplier

• 10 and 5 MFLOPS for 32- and 64-bit multiplications
(IEEE 754 standard), respectively

• Nonpipelined
• Full divide, remainder, and square root support

• Integer/logical unit
• 20 MIPS peak performance on 8/16/32-bit

integer/ordinal data
• Arithmetic, logical, and bit operations

All the above three units may be scheduled to operate in
parallel in one instruction, generating a peak computing rate

Local

iWarp

Memory
Local

iWarp

Memory

(a)

(b)

Component

iWarp Cell

Component

iWarp Cell

Component

Local
Memory

iWarp

iWarp Cell

iWarp Cell

Component

Local
Memory

iWarp

of 20 MFLOPS plus 20 MIPS.
Figure 3. Intercell connection via ports

Internal data storage and interconnect of iWarp components: (a) unidirectional bus and
• A shared, multiported, 128 word register file (b) two unidirectional busses in opposite directions
• Special register file locations for local memory and com-

The second interface method is via the local memory of themunication agent access
iWarp cell, as depicted by Figure 4.

Memory units
• Off-chip local memory for data and instructions

• Separate address and data busses (24-bit word address
bus, 64-bit data bus)

• 20 million memory accesses/sec peak performance
• 160 MBytes/sec peak memory bandwidth
• Read, write, and read/modify/write support

• On-chip program store
• 256 word cache RAM iWarp Cell

Component

Standard Busses
Local Disks

Graphics
Sensors

Memory

iWarp

• 2K word ROM (built-in functions)
• 32- and 96-bit instructions Figure 4. Connection with peripherals via local memory

of an iWarp cellCommunication and computation interface
Using this interface the iWarp cell can reach peripherals suchCommunication agent notifies computation agent on message
as standard busses, disks, graphics devices and sensors.arrival.
Therefore the iWarp cell’s connection with peripherals uses

Dynamic flow control: Computation agent spins when read- the local memory, while its intercell connection uses ports of
ing from an empty queue or writing to a full queue in com- iWarp. Since these two functions use different physical
munication agent. resources of the iWarp cell, they can be implemented in-

dependently from each other. This implies, for example, thatHardware spools data between queues and local memory.

www.manaraa.com

peripherals can be attached to any set of iWarp cells in an requirement of lower cost (and lower performance) applica-
array of iWarp cells, independently from the array intercon- tions, one or a few iWarp cells can also form a single-board
nection topology. With these two interface methods many accelerator for low-end workstations or PCs.
system configurations can be implemented, as will be shown

3.2. Special-purpose arraysin Section 3.
Many systolic algorithms can make effective use of large

processors arrays for applications such as signal processing3. iWarp usages and system configurations and graphics [10]. With the iWarp cell, various special-
The iWarp cell, consisting of the iWarp component and purpose arrays that execute only a predetermined set of these

local memory, is a building block for a variety of system algorithms can easily be built. For example, a hexagonal
configurations. These systems can be used as general and array (as depicted in Figure 7) with unidirectional physical
special-purpose computing engines. This section describes busses between cells can be built to execute some classical
some of these usages and system configurations. systolic algorithms for matrix operations [15]. For such an

array, sensors and array output ports may be connected to the
3.1. General purpose arrays local memories of a number of cells, so that I/O can be carried

With its four pairs of input and output ports, the iWarp cell out in parallel. In areas such as high-speed signal processing,
is a convenient building block for a 2D array or torus. Figure special-purpose arrays can effectively use hundreds or even
5 depicts a 3×3 torus. Peripherals can be attached to any of thousands of iWarp cells.
the iWarp cells via its local memory.

iWarp
Cell

iWarp
Cell

iWarp
Cell

iWarp
Cell

iWarp
Cell

iWarp
Cell

iWarp
Cell

iWarp
Cell

iWarp
Cell

Figure 7. Hexagonal array with unidirectional

iWarp iWarpiWarp iWarpiWarp
CellCellCell

iWarp iWarp

iWarp
Cell

iWarp
CellCell

iWarp
Cell

iWarp

iWarp
Cell

iWarp
Cell

physical busses between cells
Figure 5. 3×3 torus

In some systolic algorithms, cells on the array boundary may
The initial demonstration iWarp system in 1990 is an 8×8 execute a different function from cells inside the array [7]. In
torus, with a total of 32 MBytes SRAM. It has a peak this case, individual iWarp cells can be programmed to per-
performance of 1,280 MFLOPS. The memory of each cell form different functions according to their locations in the
can be expanded up to 1.5 MBytes, and with different array.
memory components, a memory of up to 64 MBytes per cell

In general, the performance of special-purpose arrays madeis possible. The same system design can be extended to a
of iWarp cells will be comparable to that of those arrays made32×32 torus, giving an aggregate peak performance of 20,480
of custom hardware using similar VLSI technology. Al-MFLOPS.
though the iWarp array will probably have a larger physical

The iWarp cell is a building block for 1D arrays or rings as size, it can be readily programmed to implement the target
well. Figure 6 depicts a 6-cell ring. algorithms and will incur a much shorter development time.

4. Communication models
Interprocessor communication is an integral part of parallel

computing on a distributed memory processor array. To
balance the high numerical processing capability on theCell

iWarp

iWarp

Cell
iWarp

Cell
iWarp

Cell
iWarp

Cell
iWarp

Cell

processor, iWarp must be equally efficient in communication.
Figure 6. 6-cell ring The development of efficient parallel software is simplified if

the communication cost is low and can be estimated reliably.A 1D array or ring of a moderate number of iWarp cells,
delivering on the order of hundreds of MFLOPS, can be an To motivate the communication agent design on iWarp, in
effective attached processor to a workstation. This has been this section we first describe two important communication
demonstrated by the 10-cell Warp array. Using the same models commonly used on distributed memory processor ar-
approach with iWarp, we will achieve an order of magnitude rays: message passing and systolic communication. We will
improvement in cost-performance over Warp. To meet the study the requirements to implement these models efficiently,

www.manaraa.com

from the data transport level all the way to the integration of The contents of the message can be forwarded word by word,
communication with the data processing. We then describe a without having to be buffered in entirety on intermediate
set of unifying programming abstractions to support these cells. Wormhole routing reduces the latency of communica-
models. The next section shows how they are supported by tion and does not take up any of the memory bandwidth of the
the iWarp communication facility, while meeting the perfor- intermediate cells. Since the communication path is built link
mance requirements of their usages. by link, a word-by-word handshake is necessary to throttle the

data flow in case the next link is temporarily unavailable.
4.1. Communication models

Multiplexing messages on a physical bus. Since wormholeWe have identified two communication models used for
routing may use up multiple links at the same time, preven-distributed memory parallel systems: message passing and
tion of deadlock is necessary in ring or torus architectures.systolic. They differ primarily in the granularity of com-
One scheme to prevent deadlock is the virtual channelmunication and computation. In message passing mode, as in
method, which uses another set of links when routing beyondcomputer networks, the unit of processing is a complete mes-
a certain cell [4, 19]. If in each direction only one physicalsage. That is, a message is accumulated in the source cell
bus is available between two connecting cells, this deadlockmemory, transmitted (as a unit) to the destination cell, and
prevention scheme requires that multiple communicationonly when the full message is available in the local memory
paths be multiplexed on a physical bus. Multiplexing can alsoof the destination cell is it ready to be operated upon. Con-
be used to keep a long message from monopolizing the physi-versely, in systolic mode [12], the unit of communication and
cal bandwidth for an indefinitely long time.processing can be as fine grained as a single word in a

message. Door-to-door message passing. When a message arrives at
the destination cell, it is generally first buffered in a system4.1.1. Message passing memory space and then copied into the user’s memory space.

Message passing is a commonly used model for coarse- This extra copy can be eliminated if the data is stored directly
grain parallel computation. Processes at each cell operate into the desired memory location. Using the data throttling
independently on the cell’s local data and only occasionally mechanism above, the receiving process can first examine the
communicate with other cells. The timing, order, and even message header to determine the memory address for the
the communication partner are often determined at run time. message. We call this scheme of shipping data directly from
The dynamic nature makes certain communication overheads a sender’s data structures to a receiver’s data structures, with-
unavoidable, such as routing the message across the array and out any system memory buffering, door-to-door message
asynchronously invoking the answering party. To efficiently passing.
support message passing, we need the capabilities described
below. 4.1.2. Systolic communication

Systolic communication supports efficient, fine-grain paral-Hardware support for 1D and 2D configurations. 1D
lelism. In this model, the source cell program sends dataarrays and rings are easier to build than 2D arrays and tori.
items to the destination cell as it generates them, and theHowever, computations on a 2D configuration can be more
destination cell program can start processing the data as soonefficient than those on a 1D configuration for large systems
as the first word of input has arrived. For example, thewith many cells. Suppose that there are n cells in the system.
outputs of an adder in one cell can be used as operands to theUsing a 2D configuration, not only is the distance between
adder of another, without going through the memories of

cells reduced from O (n) to O (√n) hops, but also is the effec- either cells, in a matter of several clocks. This mode provides
tive bandwidth of the communication network increased since tight coupling and synchronization between cooperating
a transfer takes up fewer hops. processes.

Spooling. Suppose a process wants to send a message to a Systolic algorithms rely on the ability to transfer long
destination cell. Since the communication network is shared, streams of intermediate data between processes at high
a process does not have guaranteed instantaneous access. throughput and with low latency. More importantly, the com-
Ideally, the sender process can simply specify the destination munication cost must be consistently small, because cost
and message location, and continue with its processing variations can greatly increase delays in the overall computa-
regardless of the availability of the network, and a separate tion. This implies that dedicated communication paths are
thread of control spools the data out of the memory. desirable, which may be neighboring or non-neighboring
Similarly, another spooling process can take the data from the paths depending on communication topologies of the algo-
network and store it into the receiver’s memory, with minimal rithm.
interference with the computational process in progress.

Raw data words are sent along a communication path, iden-
Separate communication support hardware. In an iWarp tified only by their ordering in the data stream. The sender

array, a message may be routed through intermediate cells appends data to the end of the data stream and the receiver
before reaching the final destination. The routing of data must access the words in the order they arrive. Our ex-
through a cell is logically unrelated to the process local to the perience with the Warp systolic array [1] shows that FIFO
cell. It can be supported in dedicated hardware to handle the queuing along a communication path is useful in relaxing the
high bandwidth of the array. coupling between the sender and the receiver. A sender does

not need to wait for the receiver unless the queue is full;Word-level synchronization. Although the granularity of
similarly, the receiver can process the queued data until theycommunication is a message, this does not mean that the
run out. Word-level synchronization is provided by stalling aintermediate hops should forward the data at the same grain
process that tries to read from an empty queue or write to asize. In wormhole routing [3], the routing information in the
full queue.header of the message can be used to set up the next leg of the

communication path even before the rest of the data arrives.

www.manaraa.com

A special-purpose systolic array can be tailored to a specific scheme to avoid deadlocks a message can always get through,
algorithm by implementing the dedicated communication although it may have to wait for a while if the network is
paths directly in hardware and providing long enough queues backed up with long messages.
to ensure a steady flow of data. As a programmable array,

Both models can benefit from a mechanism to reserve a setiWarp processors should implement the common systolic al-
of communication paths for a class of messages. For instance,gorithms well, but can also degrade gracefully to cover other
we can reserve a set of communication paths for systemalgorithms. We have identified the following requirements
messages for purposes such as synchronization, programfor efficient support of systolic communication.
debugging and code downloading. First of all, this guarantees

Hardware support for 1D and 2D configurations. Many that the system can reach all the cells even if the user uses up
systolic algorithms in signal and image processing and in all other paths. Moreover, since the system has full control
scientific computing use 1D and 2D processor arrays [10]. over all messages on the reserved network, the behavior of the
iWarp can directly support such configurations in hardware. network is more predictable, and attributes such as a

guaranteed response time are possible.
Multiplexing communication paths on a physical bus.

iWarp can also support other configurations, with degraded 4.2. Messages and pathways
performance, if necessary. A systolic algorithm may call for Message passing and systolic communication are two kinds
more communication paths between a pair of connecting cells of communication. The former supports coarse-grain paral-
than those provided directly by hardware. It may require lelism where processes at different cells behave indepen-
extra communication paths for configurations such as a dently, and the latter supports fine-grain parallelism where
hexagonal array, or to implement deadlock avoidance processes at different cells cooperate synchronously.
schemes [14]. Divide-and-conquer algorithms may require However, on examining the requirements to make message
communication between powers of two distances away at passing efficient and systolic communication general, they are
different times of the algorithm. All these considerations not that dissimilar. For example, wormhole routing uses up
motivate the need to multiplex multiple communication paths multiple hardware links simultaneously, much like a com-
on a physical bus. munication path in systolic communication that connects two

non-neighboring processes. On iWarp, both communicationCoupling of computation and communication. The com-
models can be unified and supported efficiently by the sameputation part of a cell needs to access the communication part
programming abstractions of a pathway and a message,directly without going through the cell’s local memory. This
defined below.extra source of data is a key to systolic algorithm’s efficiency.

For example, fine-grained systolic algorithms for important A pathway is a direct connection from a cell (called the
matrix operations can consume and produce up to four data source cell) to another cell (called the destination cell). Each
words per clock. Memory bandwidth cannot match this high segment of the pathway that connects the communication
communication bandwidth. agent of a cell to the computation agent of the same cell or to

the communication agent of another cell is called a pathwaySpooling. Regardless of the size of the hardware queue
segment. (See Figure 9 for examples of pathways.)available on each cell, there is always some systolic algorithm

that requires deeper queues. For example, a systolic algo- A message consists of a header, a sequence of data words,
rithm for convolving a kernel with a 2D image requires some and a marker denoting the end of the message. Messages can
cells to store the entire row of the image [11]. Therefore, it is be sent from the source cell to the destination cell over a
desirable to provide an automatic facility to overflow the data pathway. The pathway is initiated and terminated by the
to the cell’s local memory if necessary. source cell. It assembles a header containing a destination

address and additional routing information and hands it to the4.1.3. Reserving a communication subnetwork
communication agent. The source cell closes the pathway byIn both message passing and systolic communication
sending a special marker to signal the end.models, there is a need to multiplex multiple communication

paths onto a physical bus. Efficient support of communica- Normally, one pathway is set up for each individual mes-
tion paths requires dedicated hardware resources, thus only a sage. The source cell opens a pathway to the destination cell,
small number of paths can be provided. This resource limita- sends its message, and then closes the pathway. In the mes-
tion raises the issue of resource management. sage passing model, the sending process dynamically creates

a new pathway and message for each data transfer. Not allThe need for managing the communication resource is more
intermediate links of a pathway need to exist at the same time.pronounced in the systolic communication model. This is
In wormhole routing, the marker denoting the end of thebecause the production and consumption rates of a data
pathway may have reached an intermediate cell even beforestream are tied directly to the computation rates of the cells.
the header and data reach the destination. In the systolicAs the computation on a cell can stall and even deadlock
communication model, the cells typically set up requiredwhile waiting for data, the lifetime of a communication path
pathways for a longer duration. The sending program trans-can be arbitrarily long. Although an idle communication path
mits individual data words along a pathway as they aredoes not consume any communication bandwidth, if all the
generated without sending any additional headers or markers.multiplexed paths on a physical bus are occupied, no other
On termination, the cell programs close the message and thetraffic can get through.
pathway.

In message passing, an entire message is first prepared and
However, it is possible that a pathway is set up for multiplebuffered in the sender cell’s local memory, and the message is

messages. That is, the sender cell does not take down thestored into the destination cell’s local memory directly. Once
pathway immediately after the first message has passeda communication path becomes available, the data can be
through, so the sender can send further messages over thespooled in and out of the memories. With a proper routing

www.manaraa.com

same pathway. The sender cell has reserved the pathway for 3. outgoing busses to communication agent of a
its future use. neighboring cell, and

Reservation of multiple pathways is also possible on iWarp. 4. outgoing busses to computation agent of the
Two pathways are said to be connected if the destination cell same cell
of one is the source of the other. The sender of the first

The mapping of the logical busses to physical busses ispathway can send messages to the destination of the second
performed statically, under software control. The hardwareusing both pathways. In this way, a cell can send messages to
allows the total number of incoming logical busses in themultiple destinations through a set of reserved pathways.
communication agent of each cell to be as large as 20. For
example, in a 2D array, the logical busses can be evenly

5. iWarp communication distributed among the four neighbors and the computation
agent, as shown in Figure 8(b). In this case, the heart of theThis section describes how the communication agent on
communication agent is a 20×20 crossbar that links incomingiWarp implements the above programming abstractions and
logical busses to outgoing logical busses. Logical busses aresatisfies the performance requirements of both the message
managed by the source, i.e., the sending cell. The sender canpassing and systolic communication models. We break down
initiate communication using any of its pre-allocated freethe functionality of the communication agent into four
logical busses without consulting the receiver. This designcategories. The categories and the requirements they fulfill
minimizes the time needed to set up a pathway between cells.are summarized as follows:

1. Physical communication network: Hardware
support for 1D and 2D configurations.

2. Logical communication network: A
mechanism to multiplex multiple pathway seg-
ments on a physical bus on a word level basis.

3. Pathway unit: A mechanism to establish path-
ways.

4. Streaming and spooling unit: Direct access of
communication agent from the computation
agent, and a spooling mechanism to transfer
data from and to local memory.

5.1. Physical communication network
The communication network of iWarp is based on a set of

high bandwidth point-to-point physical busses, linking the
input and output ports of a pair of cells. Each cell has four
input and four output ports, allowing cells to be connected in
various topologies. Figure 8(a) illustrates the 2D array con-
figuration where each cell is connected bidirectionally to four
cells.

Each physical bus can transmit one 32-bit word data every
100 ns. The VLSI, custom chip implementation made it
possible to have fine-grain, word level handshaking without

(a)

(b)

Comp

20x20
Crossbar

any synchronization delay. Thus, each physical bus has a data
Figure 8. (a) Physical communication networkbandwidth of 40 MBytes/sec, giving an aggregate data trans-

fer rate of 320 MBytes/sec. (b) logical busses of a cell

5.2. Logical communication network 5.3. The pathway unit
Besides the four input and four output external busses A pathway is formed by connecting a sequence of pathway

described above for connecting to other cells, a communica- segments together. Figure 9 contains an example of three
tion agent is also connected to the computation agent in its pathways through some cells in a 2D array. Pathway 1
cell through two input and two output internal busses. Each connects the computation agent of B to that of A through a
of these busses can be multiplexed on a word level basis to pathway segment between the communication agents of the
support a number of logical busses in the same direction, two cells. Pathway 2 passes through cell A, turns a corner at
whereas each logical bus can implement one pathway seg- cell C and finally reaches the destination D. Lastly, path-
ment of a pathway at a time. way 3 passes through both cells C and D. Two pathway

segments are multiplexed on the physical bus from cell C to
To the communication agent on a cell, there are four kinds cell D.

of logical busses:
A new pathway is established by the use of a special open1. incoming busses from communication agent of a

pathway marker. As the communication agents pass the openneighboring cell,
pathway marker along from cell to cell, they allocate

2. incoming busses from computation agent of the resources to form the pathway.
same cell,

Open pathway markers carry addresses to tell how to route

www.manaraa.com

them from their source to their destination, using streetsign input gates and two output gates. These gates can be bound to
routing (e.g., ‘‘go to Jones and stop’’). There are two com- different logical busses dynamically. A read from the gate
ponents of such a streetsign: the streetname (e.g., Jones) and will consume the next word of the associated input message;
the associated action (e.g., stop). The controller provides correspondingly, a write to an output gate will generate the
special hardware support for address recognition with a mul- next word of the associated output message. Data word-at-a-
tiple entry Address Match CAM. For example, a pathway time synchronization is expressed in algorithms by the side
route might consist of ‘‘go to Jones, turn right, go to Smith, effects of gate register references (e.g., a read of an input gate
turn left, go to Johnson, and stop’’. Each pathway unit is at which no data is available causes the instruction to spin
responsible for recognizing addresses of open pathway until the data arrives).
markers requiring service or attention at that cell. Given the

iWarp also provides a transparent, low overheadsequential nature of streetsign routing interpretation, a given
mechanism for transferring data between the pathway unit andcommunication agent needs to deal with only the ‘‘next’’
the local memory via spooling gates. Spooling has low over-streetname on passing open pathway markers.
head to avoid significant reduction of the efficiency of any

Upon the arrival of an open pathway marker, the pathway ongoing or parallel computation. Spooling is transparent ex-
unit interprets the address to see if it is addressed to this cell, cept for delays incurred due to either cycle stealing (i.e., for
and, if so, posts an event to the computation agent to invoke address computation) or local memory access interference
the appropriate routine. Otherwise, it finds a free outgoing from other memory references (i.e., due to concurrent cache
logical bus along the route given by the header and connects it or instruction activities).
to the incoming logical bus. The pathway is dismantled, one
link at a time, by the flow of a close pathway marker along 6. iWarp computationthe pathway, cell to cell, from the source to the destination.

The iWarp processor is designed to execute numerical com-
The latency of communication through a cell is 100 ns putations with a high sustained floating-point arithmetic rate.

normally, and 150 ns in the case of corner turning. The The iWarp cell has a high peak computation rate of 20
interpretation of addresses and the establishment of pathways MFLOPS for single precision and 10 MFLOPS for double
are completely performed by hardware. Creating a new path- precision. More importantly, iWarp can attain a high com-
way segment does not incur any additional time delay. putation rate consistently. This is because the multiple func-

tional units in the computation agent are directly accessible
through a long instruction word (LIW) instruction. By trans-
lating user’s code directly into these long instructions using
an optimizing compiler [17], a high computation rate can be
achieved for all programs, vectorizable or not.

6.1. The computation agent
The computation agent has been optimized for LIW con-

trolled, parallel operation of multiple functional units. Chief
among these optimizations are:

• nonpipelined floating-point arithmetic units,
• inter-unit and intra-unit, output to input, operand

bypassing,
• parallel, hardware supported, zero-overhead looping,
• large, shared, multi-ported register file,
• a high bandwidth, low latency (no striding penalty)

memory,
• high bandwidth, low latency interface with the com-

munication agent.

The LIW workhorse instruction of iWarp is called the
ComputeAndAccess (C&A) instruction. As an example of the
parallelism available, a loop with code

A B

DC

12

3

FOR i := 0 TO n-1 DO BEGIN
Figure 9. Pathways in a 2D array f:=(A[i]*B[3*i])+f;

END;5.4. The streaming and spooling unit
is compiled into a loop that initiates one iteration every cycleThe computation agent can get access to the communication
surrounded by a loop prologue and epilogue to get the itera-data by (1) directly accessing the communication agent a
tions started. Similarly, a loop body that reads a value V1word at a time, or (2) spooling the data in and out of local
from one message, V2 from another message, computes V1memory using special hardware support.
* V2 + C[i] and sends the result as well as V2 on to the

Programs can read data from a message or write data to a next processor is also translated into a single C&A instruction
message via the side effects of special register references. in the loop body. The single precision C&A instruction
These special registers are called streaming gates, because executes in two clocks, and the double precision C&A in-
they provide a ‘‘gating’’ or ‘‘windowing’’ function allowing a struction executes in four clocks, so both loops execute at the
stream of data to pass, word by word, between the com- peak computation rate of the processor.
munication agent and the computation agent. There are two

www.manaraa.com

A C&A instruction requires up to 8 operands and produces dous disparity in MFLOPS rates for the different loops as do
up to 4 results. Memory accesses may produce or consume vector machines. Nonetheless, the variation between the
up to two of those operands: either a read and a write or two MFLOPS rates obtained is still significant. Near peak perfor-
reads. Each memory reference includes an address computa- mance can be achieved (using a high-level language and an
tion (e.g., an indexing operation with a non-unit stride). The optimizing compiler), as demonstrated by kernels 3 and 7. On
C&A instruction employs a read-ahead/write-behind pipeline the other hand, performance of near 1 MFLOPS is also ob-
that makes memory read operands from one instruction avail- served. The factors that limit iWarp performance are data
able for use in the next. Conversely, computational results of dependency and the critical resource bottleneck.
one instruction are written to memory during the next.

Those operand references that are not satisfied by the
memory read operation or read from a gate (see Section 5.4)
must be to the register file. These operands may themselves
be the results of previous operations (e.g., intermediate results
held in the register file). To avoid any interinstruction
latencies, the results of the integer/logical unit or a floating-
point unit may be ‘‘bypassed’’ directly back to that unit as an
input operand, without waiting for the destination register file
location to be updated. Also, the results of either floating-
point unit may be ‘‘bypassed’’ directly to the other floating-
point unit (e.g., to support multiply-accumulate sequences).

Thus, the execution of a single C&A instruction can include
up to one floating-point multiplication, one floating-point ad-
dition, two memory accesses (including two integer opera-
tions for addressing), four gate accesses, several more register
accesses (enough to provide the rest of the required operands),
and branching back to the beginning of the loop.

Incremental to the single ‘‘long’’ C&A instruction, the
iWarp computation agent provides a full complement of
‘‘short’’ instructions. They can be thought of as 2 and 3
address RISC-like instructions. These ‘‘short’’ instructions
are provided to make iWarp a generally programmable
processor. They usually control only a single functional unit.

6.2. Livermore Loops performance
The Livermore Loops [6], a set of computational kernels

typically found in scientific computing, have been used since
the 1960’s as a benchmark for computer systems. The loops
range from having no data dependence between iterations
(easily vectorizable) to having only a single recurrence
(strictly sequential). This combination of vector and scalar
code provides a good measure on the performance of a
machine across a spectrum of scientific computing require-
ments.

The Livermore loops were manually translated from
FORTRAN to W2. (W2 is a Pascal-like language developed
for the Warp machine. The retargeted W2
compiler [8, 17, 16] has been used as a tool in developing and
evaluating the iWarp architecture.) The translation into W2
was straightforward, preserving loop structures and changing
only syntax, except for kernels 15 and 16, which were trans-
lated from Feo’s restructured loops [6].

The performance of Livermore Loops (double precision) on
a single iWarp processor is presented in Table 6-1. The
unweighted mean is 4.2 MFLOPS, the standard deviation is
2.6 MFLOPS and the harmonic mean is 2.7 MFLOPS. Since
the machine’s peak double-precision performance is 10
MFLOPS, these numbers demonstrate a highly effective use
of the raw computation power of iWarp.

The iWarp cell is a scalar processor, and does not require
that loops be vectorizable for full utilization of its floating-
point units. This is why it does not exhibit the same tremen-

www.manaraa.com

mance parallel systems. Not only does iWarp have impres-Kernel MFLOPS Kernel MFLOPS
sive computational capabilities, it also has exceptional com-
munication capabilities, making iWarp suitable for both scien-1 8.2 13 1.8
tific computing and high speed signal processing. The first2 3.3 14 3.2
iWarp based systems will be 1D arrays, rings, 2D arrays or3 9.8 15 1.6
tori, but the iWarp component is flexible enough to be used in

4 3.2 16 0.8 numerous other organizations.
5 3.3 17 1.6

We anticipate iWarp to have a significant impact on the6 5.0 18 6.6
practice of parallel computing. Arrays of thousands of cells

7 9.9 19 4.0 are feasible, programmable, and much cheaper than many
8 7.4 20 3.1 other supercomputers of comparable power. iWarp systems
9 6.7 21 4.1 can have a variety of goals: they can be special or general

purpose, and experimental or commercial. The support of10 2.0 22 3.1
well accepted languages for the cell like FORTRAN and C,11 2.0 23 6.3
together with parallel program generators to simplify the pro-

12 2.5 24 0.9 gramming of the array, make it possible to program the
diverse parallel machines that can be realized with iWarp

Table 6-1: Double precision performance of components.
Livermore Loops on a single iWarp cell

The iWarp component has to meet the diverse requirements
Data dependency. Consider kernel 5: of fine-grain and coarse-grain communication for various ap-

plications including scientific computing and signal process-FOR i := 0 TO n-1 DO BEGIN
ing. The design of the iWarp component has convinced usX[i] := Z[i] * (Y[i] - X[i-1]);
that these requirements are not incompatible and, in fact, doEND;
reinforce each other. The high bandwidth/low latency com-

The multiplications and additions are serialized because of the munication mechanism in iWarp implements both message
data dependencies. Just by this consideration alone, iWarp is passing and systolic communication efficiently. This synergy
limited to a peak performance of 5 MFLOPS on this loop. makes iWarp a suitable building block for the affordable
However, iWarp still executes data dependent code better supercomputing systems of the future.
than vector machines. The floating-point units are not
pipelined, and there is no penalty on non-unit stride memory
accesses. More importantly, not all data dependencies force Referencesthe code to be serialized. As long as the loop contains other
independent floating-point operations, the floating-point units

1. Annaratone, M., Arnould, E., Gross, T., Kung, H. T., Lam, M.,can still be utilized. This is a unique advantage an LIW
Menzilcioglu, O. and Webb, J. A. "The Warp Computer: Architec-architecture has over vector machines.
ture, Implementation and Performance". IEEE Transactions on Com-
puters C-36, 12 (December 1987), 1523-1538.Critical resource bottleneck. The execution speed of a

program is limited by the most heavily used resource. Unless 2. Annaratone, M., Bitz, F., Deutch, J., Hamey, L., Kung, H. T.,
both the floating-point multiplier and adder are the most criti- Maulik, P., Ribas, H., Tseng, P. and Webb, J. Applications Ex-
cal resources, the peak MFLOPS rate cannot be achieved. perience on Warp. Proceedings of the 1987 National Computer
Programs containing no multiplications cannot run faster than Conference, AFIPS, 1987, pp. 149-158.
5 MFLOPS since the multiplier is idle all the time. For

3. Dally, William J.. A VLSI Architecture for Concurrent Dataexample, for kernel 13 since the integer/logical unit is the
Structures. Kluwer Academic Publishers, 1987.most heavily used resource, the MFLOPS measure is

naturally low. 4. Dally, W.J., Seitz, C.L. "Deadlock-Free Message Routing in
Multiprocessor Interconnection Networks". IEEE Transactions on
Computers C-36, 5 (May 1987), 547-553.

7. Summary and conclusions
5. Dongarra, J.J., Bunch, J.R., Moler, C.B. and Stewart, G.W..

iWarp is the first of a new class of parallel computer ar- LINPACK Users’ Guide. Society for Industrial and Applied Math-
chitectures. iWarp integrates both the computation and com- ematics, Philadelphia, 1979.
munication functionalities into a single VLSI component.

6. Feo, J. T. "An Analysis of the Computational and ParallelThe communication models supported range from large-grain
Complexity of the Livermore Loops". Parallel Computing 7, 2 (Junemessage passing to fine-grain systolic communication.
1988), 163-186.

The computation agent of an iWarp component contains
7. Gentleman, W.M. and Kung, H.T. Matrix Triangularization byfloating-point units with a peak performance of 20 and 10
Systolic Arrays. Proceedings of SPIE Symposium, Vol. 298, Real-

MFLOPS for single and double precision operations, respec- Time Signal Processing IV, Society of Photo-Optical Instrumentation
tively, as well as an integer/logical unit that performs 20 Engineers, August, 1981, pp. 19-26.
million integerk or logical operations per second. The com-

8. Gross, T. and Lam, M. Compilation for a High-performancemunication agent operates independently of the computation
Systolic Array. Proceedings of the SIGPLAN 86 Symposium onagent; since both are implemented on a single chip, tight
Compiler Construction, ACM SIGPLAN, June, 1986, pp. 27-38.coupling between communication and computation is pos-

sible. This permits efficient systolic communication, as well 9. Hamey, L. G. C., Webb, J. A., and Wu, I. C. Low-level Vision on
as low-overhead message passing. Warp and the Apply Programming Model. In Parallel Computation

and Computers for Artificial Intelligence, Kluwer Academic
iWarp is designed to be a building block for high perfor- Publishers, 1987, pp. 185-199. Edited by J. Kowalik.

www.manaraa.com

10. Kung, H.T. "Why Systolic Architectures?". Computer Magazine
15, 1 (Jan. 1982), 37-46.

11. Kung, H.T., Ruane, L.M., and Yen, D.W.L. "Two-Level
Pipelined Systolic Array for Multidimensional Convolution". Image
and Vision Computing 1, 1 (February 1983), 30-36. An improved
version appears as a CMU Computer Science Department technical
report, November 1982..

12. Kung, H. T. Systolic Communication. Proceedings of the
International Conference on Systolic Arrays, May, 1988, pp. 695-703.

13. Kung, H. T. "Computational Models for Parallel Computers".
Philosophical Transactions of the Royal Society (1988).

14. Kung, H. T. Deadlock Avoidance for Systolic Communication.
Conference Proceedings of the 15th Annual International Symposium
on Computer Architecture, June, 1988, pp. 252-260.

15. Kung, H.T. and Leiserson, C.E. Systolic Arrays (for VLSI).
Sparse Matrix Proceedings 1978, Society for Industrial and Applied
Mathematics, 1979, pp. 256-282.

16. Lam, M. Software Pipelining: An Effective Scheduling Tech-
nique for VLIW Machines. ACM Sigplan ’88 Conference on Pro-
gramming Language Design and Implementation., June, 1988.

17. Lam, M. A Systolic Array Optimizing Compiler. Ph.D. Th.,
Carnegie Mellon University, May 1987.

18. Pomerleau, D. A., Gusciora, G. L., Touretzky, D. S. and Kung,
H. T. Neural Network Simulation at Warp Speed: How We Got 17
Million Connections Per Second. Proceedings of 1988 IEEE Inter-
national Conference on Neural Networks, July, 1988, pp. 143-150.

19. Raubold, E. and Haenle, J. A Method of Deadlock-Free
Resource Allocation and Flow Control in Packet Networks. Proceed-
ings of the Third International Conference on Computer Communica-
tion, International Council for Computer Communication, August,
1976.

20. Sejnowski, T. J., and Rosenberg, C. R. "Parallel Networks that
Learn to Pronounce English Text". Complex Systems 1, 1 (1987),
145-168.

21. Tseng, P. S., Lam, M. and Kung, H. T. The Domain Parallel
Computation Model on Warp. Proceedings of SPIE Symposium, Vol.
977, Real-Time Signal Processing XI, Society of Photo-Optical In-
strumentation Engineers, August, 1988.

22. Wallace, R. S., Webb, J. A. and Wu, I-C. Architecture Inde-
pendent Image Processing: Performance of Apply on Diverse Ar-
chitectures. Third International Conference on Supercomputing, In-
ternational Supercomputing Institute, Inc., Boston, MA, May, 1988,
pp. 25-34.

